CELCON® M90™ - POM ## Description Celcon acetal copolymer grade M90™ is a medium viscosity polymer providing optimum performance in general purpose injection molding and extrusion of thin walled tubing and thin gauge film. This grade provides overall excellent performance in many applications. Chemical abbreviation according to ISO 1043-1: POM Please also see Hostaform® C 9021. | Physical properties | Value | Unit | Test Standard | |---|---|---|---| | Density | 1410 | kg/m³ | ISO 1183 | | Melt volume rate, MVR | 8 | cm ³ /10min | ISO 1133 | | MVR temperature | 190 | °C | ISO 1133 | | MVR load | 2.16 | kg | ISO 1133 | | Molding shrinkage, parallel | 2.0 | % | ISO 294-4, 2577 | | Molding shrinkage, normal | 1.9 | % | ISO 294-4, 2577 | | Water absorption, 23°C-sat | 0.75 | % | ISO 62 | | Humidity absorption, 23°C/50%RH | 0.2 % | | ISO 62 | | Mechanical properties | Value | Unit | Test Standard | | Tensile modulus | 2760 | MPa | ISO 527-2/1A | | Tensile stress at yield, 50mm/min | 65 | MPa | ISO 527-2/1A | | Tensile strain at yield, 50mm/min | 10 | % | ISO 527-2/1A | | Tensile creep modulus, 1h | 2450 | MPa | ISO 899-1 | | Tensile creep modulus, 1000h | 1350 | MPa | ISO 899-1 | | Flexural modulus, 23°C | 2550 | MPa | ISO 178 | | Flexural stress at 3.5% strain | 73 | MPa | ISO 178 | | Charpy impact strength, 23°C | 188 | kJ/m² | ISO 179/1eU | | Charpy impact strength, -30°C | 181 | kJ/m² | ISO 179/1eU | | Charpy notched impact strength, 23°C | 6 | kJ/m² | ISO 179/1eA | | Charpy notched impact strength, -30°C | 6 | kJ/m² | ISO 179/1eA | | Izod impact notched, 23 °C | 5.7 | kJ/m² | ISO 180/1A | | Izod impact notched, -30°C | 5.5 | kJ/m² | ISO 180/1A | | Compressive stress at 1% strain | 26 | MPa | ISO 604 | | Compressive stress at 6% strain | 88 | MPa | ISO 604 | | | | | | | Thermal properties | Value | Unit | Test Standard | | 6a 66 | | | | | Melting temperature, 10°C/min | 166 | °C | ISO 11357-1/-3 | | Melting temperature, 10°C/min
DTUL at 1.8 MPa | 166
101 | °C | ISO 11357-1/-3
ISO 75-1, -2 | | Melting temperature, 10°C/min
DTUL at 1.8 MPa
DTUL at 0.45 MPa | 166
101
158 | °C
°C
°C | ISO 11357-1/-3
ISO 75-1, -2
ISO 75-1, -2 | | Melting temperature, 10°C/min
DTUL at 1.8 MPa
DTUL at 0.45 MPa
Vicat softening temperature, 50°C/h 50N | 166
101
158
161 | °C
°C
°C | ISO 11357-1/-3
ISO 75-1, -2
ISO 75-1, -2
ISO 306 | | Melting temperature, 10°C/min DTUL at 1.8 MPa DTUL at 0.45 MPa Vicat softening temperature, 50°C/h 50N Coeff. of linear therm expansion, parallel | 166
101
158
161
1.2 | °C
°C
°C
°C
E-4/°C | ISO 11357-1/-3
ISO 75-1, -2
ISO 75-1, -2
ISO 306
ISO 11359-2 | | Melting temperature, 10°C/min DTUL at 1.8 MPa DTUL at 0.45 MPa Vicat softening temperature, 50°C/h 50N Coeff. of linear therm expansion, parallel | 166
101
158
161 | °C
°C
°C | ISO 11357-1/-3
ISO 75-1, -2
ISO 75-1, -2
ISO 306 | | Melting temperature, 10°C/min DTUL at 1.8 MPa DTUL at 0.45 MPa Vicat softening temperature, 50°C/h 50N Coeff. of linear therm expansion, parallel Coeff. of linear therm expansion, normal | 166
101
158
161
1.2 | °C
°C
°C
°C
E-4/°C | ISO 11357-1/-3
ISO 75-1, -2
ISO 75-1, -2
ISO 306
ISO 11359-2 | | Melting temperature, 10°C/min DTUL at 1.8 MPa DTUL at 0.45 MPa Vicat softening temperature, 50°C/h 50N Coeff. of linear therm expansion, parallel Coeff. of linear therm expansion, normal | 166
101
158
161
1.2 | °C °C °C °C E-4/°C | ISO 11357-1/-3
ISO 75-1, -2
ISO 75-1, -2
ISO 306
ISO 11359-2
ISO 11359-2 | | Melting temperature, 10 ° C/min DTUL at 1.8 MPa DTUL at 0.45 MPa Vicat softening temperature, 50 ° C/h 50N Coeff. of linear therm expansion, parallel Coeff. of linear therm expansion, normal Electrical properties Volume resistivity Surface resistivity | 166
101
158
161
1.2
1.2 | °C °C °C °C E-4/°C E-4/°C | ISO 11357-1/-3
ISO 75-1, -2
ISO 75-1, -2
ISO 306
ISO 11359-2
ISO 11359-2 | | Melting temperature, 10 °C/min DTUL at 1.8 MPa DTUL at 0.45 MPa Vicat softening temperature, 50 °C/h 50N Coeff. of linear therm expansion, parallel Coeff. of linear therm expansion, normal Electrical properties Volume resistivity | 166
101
158
161
1.2
1.2
Value
8E12 | °C °C °C °C E-4/°C E-4/°C Unit Ohm*m | ISO 11357-1/-3 ISO 75-1, -2 ISO 75-1, -2 ISO 306 ISO 11359-2 ISO 11359-2 Test Standard IEC 60093 | | Melting temperature, 10 °C/min DTUL at 1.8 MPa DTUL at 0.45 MPa Vicat softening temperature, 50 °C/h 50N Coeff. of linear therm expansion, parallel Coeff. of linear therm expansion, normal Electrical properties Volume resistivity Surface resistivity | 166
101
158
161
1.2
1.2
Value
8E12
3E16 | °C °C °C °C E-4/°C E-4/°C Unit Ohm*m | ISO 11357-1/-3 ISO 75-1, -2 ISO 75-1, -2 ISO 306 ISO 11359-2 ISO 11359-2 Test Standard IEC 60093 IEC 60093 | | Melting temperature, 10 °C/min DTUL at 1.8 MPa DTUL at 0.45 MPa Vicat softening temperature, 50 °C/h 50N Coeff. of linear therm expansion, parallel Coeff. of linear therm expansion, normal Electrical properties Volume resistivity Surface resistivity Test specimen production | 166
101
158
161
1.2
1.2
Value
8E12
3E16 | °C °C °C °C E-4/°C E-4/°C Unit Ohm*m | ISO 11357-1/-3 ISO 75-1, -2 ISO 75-1, -2 ISO 306 ISO 11359-2 ISO 11359-2 Test Standard IEC 60093 IEC 60093 Test Standard | | Melting temperature, 10 °C/min DTUL at 1.8 MPa DTUL at 0.45 MPa Vicat softening temperature, 50 °C/h 50N Coeff. of linear therm expansion, parallel Coeff. of linear therm expansion, normal Electrical properties Volume resistivity Surface resistivity Test specimen production Processing conditions acc. ISO Injection Molding, melt temperature | 166
101
158
161
1.2
1.2
Value
8E12
3E16
Value
9988-2 | °C °C °C °C E-4/°C E-4/°C Unit Ohm*m Ohm Unit | ISO 11357-1/-3 ISO 75-1, -2 ISO 75-1, -2 ISO 306 ISO 11359-2 ISO 11359-2 Test Standard IEC 60093 IEC 60093 Test Standard Internal | | Melting temperature, 10 °C/min DTUL at 1.8 MPa DTUL at 0.45 MPa Vicat softening temperature, 50 °C/h 50N Coeff. of linear therm expansion, parallel Coeff. of linear therm expansion, normal Electrical properties Volume resistivity Surface resistivity Test specimen production Processing conditions acc. ISO Injection Molding, melt temperature Injection Molding, mold temperature | 166
101
158
161
1.2
1.2
Value
8E12
3E16
Value
9988-2
205 | °C °C °C °C E-4/°C E-4/°C Unit Ohm*m Ohm Unit - °C | ISO 11357-1/-3 ISO 75-1, -2 ISO 75-1, -2 ISO 306 ISO 11359-2 ISO 11359-2 Test Standard IEC 60093 IEC 60093 Test Standard Internal ISO 294 | | Melting temperature, 10 °C/min DTUL at 1.8 MPa DTUL at 0.45 MPa Vicat softening temperature, 50 °C/h 50N Coeff. of linear therm expansion, parallel Coeff. of linear therm expansion, normal Electrical properties Volume resistivity Surface resistivity Test specimen production Processing conditions acc. ISO Injection Molding, melt temperature Injection Molding, injection velocity | 166
101
158
161
1.2
1.2
Value
8E12
3E16
Value
9988-2
205
90 | °C °C °C °C E-4/°C E-4/°C Unit Ohm*m Ohm Unit - °C °C | ISO 11357-1/-3 ISO 75-1, -2 ISO 75-1, -2 ISO 306 ISO 11359-2 ISO 11359-2 Test Standard IEC 60093 IEC 60093 Test Standard Internal ISO 294 ISO 294 | | Melting temperature, 10 °C/min DTUL at 1.8 MPa DTUL at 0.45 MPa Vicat softening temperature, 50 °C/h 50N Coeff. of linear therm expansion, parallel Coeff. of linear therm expansion, normal Electrical properties Volume resistivity Surface resistivity Test specimen production Processing conditions acc. ISO Injection Molding, melt temperature Injection Molding, injection velocity Injection Molding, pressure at hold | 166
101
158
161
1.2
1.2
1.2
Value
8E12
3E16
Value
9988-2
205
90
200 | °C °C °C E-4/°C E-4/°C Unit Ohm*m Ohm Unit - °C °C mm/s | ISO 11357-1/-3 ISO 75-1, -2 ISO 75-1, -2 ISO 306 ISO 11359-2 ISO 11359-2 Test Standard IEC 60093 IEC 60093 Test Standard Internal ISO 294 ISO 294 ISO 294 | | Melting temperature, 10 °C/min DTUL at 1.8 MPa DTUL at 0.45 MPa Vicat softening temperature, 50 °C/h 50N Coeff. of linear therm expansion, parallel Coeff. of linear therm expansion, normal Electrical properties Volume resistivity Surface resistivity Test specimen production Processing conditions acc. ISO | 166
101
158
161
1.2
1.2
Value
8E12
3E16
Value
9988-2
205
90
200
86 | °C °C °C E-4/°C E-4/°C Unit Ohm*m Ohm Unit - °C °C mm/s MPa | ISO 11357-1/-3 ISO 75-1, -2 ISO 75-1, -2 ISO 306 ISO 11359-2 ISO 11359-2 Test Standard IEC 60093 IEC 60093 Test Standard Internal ISO 294 ISO 294 ISO 294 ISO 294 | | Melting temperature, 10 °C/min DTUL at 1.8 MPa DTUL at 0.45 MPa Vicat softening temperature, 50 °C/h 50N Coeff. of linear therm expansion, parallel Coeff. of linear therm expansion, normal Electrical properties Volume resistivity Surface resistivity Test specimen production Processing conditions acc. ISO Injection Molding, melt temperature Injection Molding, mold temperature Injection Molding, pressure at hold Rheological calculation properties | 166
101
158
161
1.2
1.2
1.2
Value
8E12
3E16
Value
9988-2
205
90
200
86 | °C °C °C E-4/°C Unit Ohm*m Ohm Unit - °C °C mm/s MPa Unit | ISO 11357-1/-3 ISO 75-1, -2 ISO 75-1, -2 ISO 306 ISO 11359-2 ISO 11359-2 Test Standard IEC 60093 IEC 60093 Test Standard Internal ISO 294 ISO 294 ISO 294 ISO 294 ISO 294 ISO 294 | # CELCON® M90™ - POM | Eff. thermal diffusivity | 4.85E-8 | m²/s | Internal | | |--------------------------|---------|------|----------|--| | Ejection temperature | 140 | °C | Internal | | # **Diagrams** # Stress-strain ## Secant modulus-strain ## True Stress-strain ## Stress-strain (isochronous) 23°C # Creep modulus-time 23°C ## Stress-strain (isochronous) 40°C • واردات و فروش انـواع دسـتگاه تزریــق پلاسـتیک • فروش انـواع مـواد اولیــه پلیمــر وارداتـی و داخلـی • فروش انـواع گرانـول، مسـتربج و کامپاندهــای تخصصـی #### CELCON® M90™ - POM # Creep modulus-time 40°C ## Typical injection moulding processing conditions | Pre Drying | Value | Unit | Test Standard | | | |------------------------|-------------|-------|---------------|--|----| | Drying time | 3 - 4 | h | | | | | Drying temperature | 100 - 120 | °C | | | 10 | | Temperature | Value | Unit | Test Standard | | | | Zone1 temperature | 170 - 180 | °C | | | | | Zone2 temperature | 180 - 190 | °C | - 1 | | | | Zone3 temperature | 180 - 190 | °C | - 0 | | | | Zone4 temperature | 190 - 200 | °C | - | | | | Die temperature | 190 - 200 | °C | 1.50 | | | | Melt temperature | 180 - 200 | °C | | | | | Cavity temperature | 80 - 120 | °C | 7 · 7 | | | | Hot runner temperature | 180 - 200 | °C | A- /- | | | | Pressure | Value | Unit | Test Standard | | | | Back pressure max. | 40 | bar | - 0 | | | | Speed | Value | Unit | Test Standard | | | | Injection speed | slow-medium | 9 | 7 | | | | Other | Value | Unit/ | Test Standard | | | | Flow temperature | 174 | °C | Internal | | | # Other text information ## **Pre-drying** Drying is not normally required. If material has come in contact with moisture through improper storage or handling or through regrind use, drying may be necessary to prevent splay and odor problems. ### Injection molding Standard reciprocating screw injection molding machines with a high compression screw (minimum 3:1 and preferably 4:1) and low back pressure (0.35 Mpa/50 PSI) are favored. Using a low compression screw (I.E. general purpose 2:1 compression ratio) can result in unmelted particles and poor melt homogeneity. Using a high back pressure to make up for a low compression ratio may lead to excessive shear heating and deterioration of the material. Melt Temperature: Preferred range 182-199 C (360-390 F). Melt temperature should never exceed 230 C (450 F). Mold Surface Temperature: Preferred range 82-93 C (180-200 F) especially with wall thickness less than 1.5 mm (0.060 in.). May require mold temperature as high as 120 C (250 F) to reproduce mold surface or to assure minimal molded in stress. Wall thickness greater than 3mm (1/8 in.) may use a cooler (65 C/150 F) mold surface temperature and wall thickness over 6mm (1/4 in.) may use a cold mold surface down to 25 C (80 F). In general, mold surface temperatures lower than 82 C (180 F) may hinder weld line formation and produce a hazy surface or a surface with flow lines, pits and other included defects that can hinder part performance. #### Film extrusion Standard extruders with a length to diameter ratio of at least 20:1 are recommended. The screw should be a high compression ratio of at least 3:1 and preferably 4:1 to assure good melting and melt homogeneity. The design should be approximately 35% each for feed and metering sections with the remaining 30% as the transition zone. # شماره تماس: ه۹۹ ۴ ه۳۳ ه۹۱۰ واردات و فروش انواع دستگاه تزریق پلاستیک فروش انواع مواد اولیه پلیمر وارداتی و داخلی فروش انواع گرانول، مستریج و کامپاندهای تخصصی #### CELCON® M90™ - POM Melt temperature: 160-220 C (320-430 F) #### Other extrusion Standard extruders with a length to diameter ratio of at least 20:1 are recommended. The screw should be a high compression ratio of at least 3:1 and preferably 4:1 to assure good melting and uniform melt homogeneity. The design should be approximately 35% each for the feed and metering sections with the remaining 30% as transition zone. Melt temperature 180-220 C (355-430F) #### Profile extrusion Standard extruders with a length to diameter ratio of at least 20:1 are recommended. The screw should be a high compression ratio of at least 3:1 and preferably 4:1 to assure good melting and melt homogeneity. The design should be approximately 35% each for feed and metering sections with the remaining 30% as the transition zone. Melt temperature: 180-220 C (360-430 F). #### **Sheet extrusion** Standard extruders with a length to diameter ratio of at least 20:1 are recommended. The screw should be a high compression ratio (at least 3:1 and preferably 4:1) to assure good melting and uniform melt homogeneity. The screw design should be approximately 35% each for the feed and metering sections with the remaining 30% as the transition zone. Melt temperature 180-190 C (355-375 F). #### **Blow molding** Consult product information services. #### Calandering Consult product information services. ## Compression molding Consult product information services. #### Characteristics Product Categories Delivery Form Unfilled Pellets # Processing Blow molding, Calandering, Film extrusion, Injection molding, Other extrusion, Sheet extrusion ## **Contact Information** #### **Americas** 8040 Dixie Highway Florence, KY 41042 USA Product Information Service t: +1-800-833-4882 t: +1-859-372-3244 Customer Service t: +1-800-526-4960 t: +1-859-372-3214 e: info-engineeredmaterials-am@celanese.com Asia 4560 Jinke Road Zhang Jiang Hi Tech Park Shanghai 201203 PRC Customer Service t: +86 21 3861 9266 f: +86 21 3861 9599 e: info-engineeredmaterials-asia@celanese.com #### Europe Am Unisys-Park 1 65843 Sulzbach, Germany Product Information Service t: +49-800-86427-531 t: +49-(0)-69-45009-1011 e: info-engineeredmaterials-eu@celanese.com ## **General Disclaimer** شماره تماس: ه۹۹ ۲ ه۳۳ ه۹۱۰ • واردات و فروش انـواع دسـتگاه تزریــق پلاسـتیک • فروش انـواع مـواد اولیــه پلیمــر وارداتـی و داخلـی • فروش انـواع گرانـول، مسـتربج و کامپاندهــای تخصصـی #### CELCON® M90™ - POM NOTICE TO USERS: Values shown are based on testing of laboratory test specimens and represent data that fall within the standard range of properties for natural material. These values alone do not represent a sufficient basis for any part design and are not intended for use in establishing maximum, minimum, or ranges of values for specification purposes. Colorants or other additives may cause significant variations in data values. Properties of molded parts can be influenced by a wide variety of factors including, but not limited to, material selection, additives, part design, processing conditions and environmental exposure. Any determination of the suitability of a particular material and part design for any use contemplated by the users and the manner of such use is the sole responsibility of the users, who must assure themselves that the material as subsequently processed meets the needs of their particular product or use. To the best of our knowledge, the information contained in this publication is accurate; however, we do not assume any liability whatsoever for the accuracy and completeness of such information. The information contained in this publication should not be construed as a promise or guarantee of specific properties of our products. It is the sole responsibility of the users to investigate whether any existing patents are infringed by the use of the materials mentioned in this publication. Moreover, there is a need to reduce human exposure to many materials to the lowest practical limits in view of possible adverse effects. To the extent that any hazards may have been mentioned in this publication, we neither suggest nor guarantee that such hazards are the only ones that exist. We recommend that persons intending to rely on any recommendation or to use any equipment, processing technique or material mentioned in this publication should satisfy themselves that they can meet all applicable safety and health standards. We strongly recommend that users seek and adhere to the manufacturer's current instructions for handling each material they use, and entrust the handling of such material to adequately trained personnel only. Please call the telephone numbers listed for additional technical information. Call Customer Services for the appropriate Materials Safety Data Sheets (MSDS) before attempting to process our products. The products mentioned herein are not intended for use in medical or dental implants. #### Trademark © 2014 Celanese or its affiliates. All rights reserved. (Published 27.July.2016). Celanese®, registered C-ball design and all other trademarks identified herein with ®, TM, SM, unless otherwise noted, are trademarks of Celanese or its affiliates. Fortron is a registered trademark of Fortron Industries LLC.